TRF2 recruits ORC through TRFH domain dimerization
نویسندگان
چکیده
منابع مشابه
Structure of the TRFH dimerization domain of the human telomeric proteins TRF1 and TRF2.
TRF1 and TRF2 are key components of vertebrate telomeres. They bind to double-stranded telomeric DNA as homodimers. Dimerization involves the TRF homology (TRFH) domain, which also mediates interactions with other telomeric proteins. The crystal structures of the dimerization domains from human TRF1 and TRF2 were determined at 2.9 and 2.2 A resolution, respectively. Despite a modest sequence id...
متن کاملORC binding to TRF2 stimulates OriP replication.
In higher eukaryotes, the origin recognition complex (ORC) lacks sequence-specific DNA binding, and it remains unclear what other factors specify an origin of DNA replication. The Epstein-Barr virus origin of plasmid replication (OriP) recruits ORC, but the precise mechanism of ORC recruitment and origin activation is not clear. We now show that ORC is recruited selectively to the dyad symmetry...
متن کاملThe effect of the TRF2 N-terminal and TRFH regions on telomeric G-quadruplex structures
The sequence of human telomeric DNA consists of tandem repeats of 5'-d(TTAGGG)-3'. This guanine-rich DNA can form G-quadruplex secondary structures which may affect telomere maintenance. A current model for telomere protection by the telomere-binding protein, TRF2, involves the formation of a t-loop which is stabilized by a strand invasion-like reaction. This type of reaction may be affected by...
متن کاملA shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins.
Mammalian telomeres are protected by a six-protein complex: shelterin. Shelterin contains two closely related proteins (TRF1 and TRF2), which recruit various proteins to telomeres. We dissect the interactions of TRF1 and TRF2 with their shared binding partner (TIN2) and other shelterin accessory factors. TRF1 recognizes TIN2 using a conserved molecular surface in its TRF homology (TRFH) domain....
متن کاملDimerization through the catalytic domain is essential for MEKK2 activation.
Mitogen-activated protein kinase (MAPK) cascades are the central components of the intracellular signaling networks that eukaryotic cells use to respond to a wide spectrum of extracellular stimuli. MAPKs are activated through a module consisting of a MAPK, a MAPK kinase (MKK), and a MKK kinase (MAP3K). Because of its unique position in the MAPK module, a MAP3K is crucial in relaying the upstrea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
سال: 2017
ISSN: 0167-4889
DOI: 10.1016/j.bbamcr.2016.11.004